
D e p t o f C S E , M B I T S Page 1

FILE-SYSTEM IMPLEMENTATION

Overview

 File systems provide efficient and convenient access to the

disk by allowing data to be stored, located, and retrieved

easily

 A file control block (FCB) (an inode in UNIX file

systems) contains information about the file, including

ownership, permissions, and location of the file contents

 UNIX uses the UNIX file system (UFS), Windows

supports disk file-system formats of FAT (File Allocation

Table) and NTFS (New Technology File System). Linux

file system is known as the extended file system

 On disk, the file system may contain information about

how to boot an OS stored there, the total number of blocks,

the number and location of free blocks, the directory

structure, and individual files.

D e p t o f C S E , M B I T S Page 2

 A boot control block (per volume) can contain

information needed by the system to boot an OS from that

volume.

 If the disk does not contain an OS, this block can be empty.

It is typically the first block of a volume.

 In UFS, it is called the boot block. In NTFS, it is the

partition boot sector.

 A volume control block (per volume) contains volume (or

partition) details, such as the number of blocks in the

partition, the size of the blocks, a free-block count and

free-block pointers, and a free-FCB count and FCB

pointers.

 In UFS, this is called a superblock. In NTFS, it is stored in

the master file table.

 A directory structure (per file system) is used to organize

the files. In UFS, this includes file names and associated

inode numbers. In NTFS, it is stored in the master file

table.

 The data are loaded at mount time, updated during file-

system operations, and discarded at dismount.

 Several types of structures may be included.

 An in-memory mount table contains information

about each mounted volume.

 An in-memory directory-structure cache holds the

directory information of recently accessed directories.

D e p t o f C S E , M B I T S Page 3

 The system-wide open-file table contains a copy of

the FCB of each open file, as well as other

information.

 The per-process open-file table contains a pointer to

the appropriate entry in the system-wide open-file

table, as well as other information.

 Buffers hold file-system blocks when they are being

read from disk or written to disk.

 To create a new file, an application program calls the

logical file system. It allocates a new FCB

 The system then reads the appropriate directory into

memory, updates it with the new file name and FCB, and

writes it back to the disk.

 Now that a file has been created, it can be used for I/O.

First it must be opened. The open() call passes a file name

to the logical file system.

 The open() system call first searches the system-wide

open-file table to see if the file is already in use by another

process. If it is, a per-process open-file table entry is

created pointing to the existing system-wide open-file

table.

 If the file is not already open, the directory structure is

searched for the given file name.

 Once the file is found, the FCB is copied into a system-

wide open-file table in memory.

D e p t o f C S E , M B I T S Page 4

 Next, an entry is made in the per-process open-file table,

with a pointer to the entry in the system-wide open-file

table

 The open() call returns a pointer to the appropriate entry in

the per-process file-system table. All file operations are

then performed via this pointer.

 The name given to the entry varies. UNIX systems refer to

it as a file descriptor; Windows refers to it as a file

handle.

 When a process closes the file, the per-process table entry

is removed, and the system-wide entry’s open count is

decremented.

 When all users that have opened the file close it, any

updated metadata is copied back to the disk-based

directory structure, and the system-wide open-file table

entry is removed

D e p t o f C S E , M B I T S Page 5

Partitions and Mounting

 A disk can be sliced into multiple partitions

 Each partition can be either ―raw,‖ containing no file

system, or ―cooked,‖ containing a file system.

 Raw disk is used where no file system is appropriate. Eg:

UNIX swap space can use a raw partition since it uses its

own format on disk and does not use a file system.

Likewise, some databases use raw disk and format the data

to suit their needs

 Boot information can be stored in a separate partition.

Again, it has its own format, because at boot time the

D e p t o f C S E , M B I T S Page 6

system does not have the file-system code loaded and

therefore cannot interpret the file-system format.

 Rather, boot information is usually a sequential series of

blocks, loaded as an image into memory. Execution of the

image starts at a predefined location, such as the first byte.

This boot loader in turn knows enough about the file-

system structure to be able to find and load the kernel and

start it executing.

 It can contain more than the instructions for how to boot a

specific OS. For instance, many systems can be dual-

booted, allowing us to install multiple OS on a single

system.

 How does the system know which one to boot? A boot

loader that understands multiple file systems and multiple

OS can occupy the boot space.

 Once loaded, it can boot one of the OS available on the

disk. The disk can have multiple partitions, each containing

a different type of file system and a different OS.

 The root partition, which contains the OS kernel and

sometimes other system files, is mounted at boot time.

 Other volumes can be automatically mounted at boot or

manually mounted later, depending on the OS. As part of a

successful mount operation, the OS verifies that the device

contains a valid file system.

 It does so by asking the device driver to read the device

directory and verifying that the directory has the expected

D e p t o f C S E , M B I T S Page 7

format. If the format is invalid, the partition must have its

consistency checked and possibly corrected, either with or

without user intervention.

 Finally, the OS notes in its in-memory mount table that a

file system is mounted, along with the type of the file

system. The details of this function depend on the OS

 Microsoft Windows–based systems mount each volume in

a separate name space, denoted by a letter and a colon. Eg:

F:

 On UNIX, file systems can be mounted at any directory.

Mounting is implemented by setting a flag in the in-

memory copy of the inode for that directory. The flag

indicates that the directory is a mount point.

Virtual File Systems (VFS)

 Modern OS must concurrently support multiple types of

file systems

 Most OS, including UNIX, use object-oriented techniques

to simplify, organize, and modularize the implementation.

 The use of these methods allows very dissimilar file-

system types to be implemented within the same structure

 Users can access files contained within multiple file

systems on the local disk or even on file systems available

across the network.

 Data structures and procedures are used to isolate the basic

system call functionality from the implementation details.

D e p t o f C S E , M B I T S Page 8

Thus, the file-system implementation consists of three

major layers

 The first layer is the file-system interface. The second layer

is called the virtual file system (VFS) layer. Third layer

will be the actual file systems

 The VFS layer serves two important functions:

1. It separates file-system-generic operations from their

implementation by defining a clean VFS interface. Several

implementations for the VFS interface may coexist on the

D e p t o f C S E , M B I T S Page 9

same machine, allowing transparent access to different

types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a

file throughout a network. The VFS is based on a file-

representation structure, called a vnode that contains a

numerical designator for a network-wide unique file. This

network-wide uniqueness is required for support of

network file systems.

 Thus, the VFS distinguishes local files from remote ones,

and local files are further distinguished according to their

file-system types.

 Consider the VFS architecture in Linux. The four main

object types defined by the Linux VFS are:

 The inode object, which represents an individual file

 The file object, which represents an open file

 The superblock object, which represents an entire file

system

 The dentry object, which represents an individual

directory entry

 For each of these four object types, the VFS defines a set

of operations that may be implemented.

 Every object of one of these types contains a pointer to a

function table. The function table lists the addresses of the

actual functions that implement the defined operations for

that particular object

D e p t o f C S E , M B I T S Page 10

DIRECTORY IMPLEMENTATION

 The selection of directory-allocation and directory-

management algorithms significantly affects the efficiency,

performance, and reliability of the file system

 The two major approaches are using linear list and hash

tables

Linear List

 The simplest method of implementing a directory is to use

a linear list of file names with pointers to the data blocks.

 This method is simple to program but time-consuming to

execute.

 To create a new file, we must first search the directory to

be sure that no existing file has the same name. Then, we

add a new entry at the end of the directory.

 To delete a file, we search the directory for the named file

and then release the space allocated to it.

 To reuse the directory entry, we can do one of several

things.

 We can mark the entry as unused (by assigning it a

special name, such as an all-blank name, or by

including a used–unused bit in each entry)

 We can attach it to a list of free directory entries.

 Copy the last entry in the directory into the freed

location and to decrease the length of the directory.

D e p t o f C S E , M B I T S Page 11

 A linked list can be used to decrease the time required to

delete a file.

 The real disadvantage of a linear list of directory entries is

that finding a file requires a linear search

 Directory information is used frequently, and users will

notice if access to it is slow.

 Many OS implement a software cache to store the most

recently used directory information. A cache hit avoids the

need to constantly reread the information from disk.

 A sorted list allows a binary search and decreases the

average search time. However, the requirement that the list

be kept sorted may complicate creating and deleting files,

since we may have to move substantial amounts of

directory information to maintain a sorted directory.

 A more sophisticated tree data structure, such as a balanced

tree, might help here. An advantage of the sorted list is that

a sorted directory listing can be produced without a

separate sort step.

Hash Table

 Here, a linear list stores the directory entries, but a hash

data structure is also used.

 The hash table takes a value computed from the file name

and returns a pointer to the file name in the linear list.

 Therefore, it can greatly decrease the directory search time.

D e p t o f C S E , M B I T S Page 12

 Insertion and deletion are also fairly straightforward,

although some provision must be made for collisions—

situations in which two file names hash to the same

location.

 The major difficulties with a hash table are its generally

fixed size and the dependence of the hash function on that

size.

 Alternatively, we can use a chained-overflow hash table.

Each hash entry can be a linked list instead of an individual

value, and we can resolve collisions by adding the new

entry to the linked list.

 Lookups may be somewhat slowed, because searching for

a name might require stepping through a linked list of

colliding table entries. Still, this method is likely to be

much faster than a linear search through the entire

directory.

